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We are interested in tracking changes in large-scale data by
periodically creating an agglomerative clustering and examining
the evolution of clusters (communities) over time. We examine a
large real-world data set: the NEC CiteSeer database, a linked
network of >250,000 papers. Tracking changes over time requires
a clustering algorithm that produces clusters stable under small
perturbations of the input data. However, small perturbations of
the CiteSeer data lead to significant changes to most of the
clusters. One reason for this is that the order in which papers within
communities are combined is somewhat arbitrary. However, cer-
tain subsets of papers, called natural communities, correspond to
real structure in the CiteSeer database and thus appear in any
clustering. By identifying the subset of clusters that remain stable
under multiple clustering runs, we get the set of natural commu-
nities that we can track over time. We demonstrate that such
natural communities allow us to identify emerging communities
and track temporal changes in the underlying structure of our
network data.

Emergent properties of large linked networks have recently
become the focus of intense study. This research is driven by

the increasing complexity and importance of large networks,
such as the World Wide Web, the electricity grid, and large social
networks that capture relationships between individuals. Real-
world networks generally exhibit properties that lie somewhere
in-between those of highly structured networks and purely
random ones (1–4). So far, most research has focused on using
static properties, such as the connectivity of the nodes in the
network and the average distance between two nodes, to explain
the complex structure. However, these networks generally evolve
over time and so temporal characteristics are a key source of
interest. Our goal in this paper is to provide techniques for the
study of the evolution of large linked networks.

In our approach, we use agglomerative clusterings of the
linked network. By clustering the network at different points in
time, we study its temporal evolution. This approach places a new
burden on the underlying clustering method. Clustering methods
can be surprisingly sensitive to minor changes of the input data.
For obtaining a static view of the higher-level structure of the
data, such instabilities may be acceptable because the resulting
hierarchy often already reveals interesting structure. However, in
tracking changes over time, we need to be able to find corre-
sponding communities in clusterings taken from the data at
different points in time. If the clusterings are very sensitive to
small perturbations of the input data, distinguishing between
‘‘real’’ changes versus ‘‘accidental’’ changes in the higher-level
structure becomes difficult, if not impossible. In the clusterings
of our linked network data, we found there are a large number
of relatively random clusters that do not correspond to real
community structures. These random clusters obscure the real
temporal changes. Fortunately, we found that, when performing
a series of agglomerative clustering runs, each run on slightly
perturbed input data, one can identify a stable set of clusters that

occur in a significant proportion of the clusterings. Moreover,
these stable clusters appear to correspond to the true underlying
community structure of the network. We refer to such stable
clusters as natural communities. We use the notion of natural
communities to show that we can track these natural commu-
nities effectively over time, and can therefore characterize the
temporal evolution of the network.

Data Set
We used an October 2001 snapshot of the NEC CiteSeer
database (5). At that time, the CiteSeer database contained the
full text and bibliographies of �250,000 papers. These are mostly
related to computer science, with a small collection covering
other topics like physics, mathematics, and economics. The
papers are mostly published after 1990, and the set is growing by
�25,000 papers per year. In addition, the database contains title
and author information on another 1.6 million earlier papers that
are referenced by the 250,000 set but whose full text is not
contained in the database.

We analyze the citation graph induced by this data set: vertices
correspond to all 1.85 million papers in the database; there is a
directed edge from paper A to paper B if A references B. We call
the set of 250,000 papers whose full-text and bibliography are
known the core of the citation graph. The papers in the core have
citations to each other and to the 1.6 million earlier papers. We
do not have the reference lists for the papers outside the core.
So, their out-degree is 0, whereas their in-degree is at least 1. Fig.
1 gives a pictorial representation of our graph, and Table 1
contains key statistics. The out-degree (number of papers in the
bibliography of a paper) of a typical node ranges from 5 to 25.
The median out-degree for the core papers is 14. Interestingly,
the majority of core papers are uncited (in-degree � 0). Refs. 6
and 7 describe methods for removing inaccuracies in the Cite-
Seer citation graph caused by the automatic generation of the
graph.

The basic statistics of this graph already reveal that its
structure is very different from a standard random graph. About
1 in every 100 papers receives �20 citations, 1 in every 1,000
papers has 300 citations or more, and 18 papers of the 1.85
million have �1,000 citations. This pattern is indicative of the
heavy-tailed nature of the data, characterized by a power law in
the in-degree (8). An interesting research question concerns the
role of the highly cited papers. For example, are such nodes
essential in the definition of the hidden community structure or
does such structure remain even after removing high degree
nodes from the graph? Also, are such nodes essential in the
formation of new communities?
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Instabilities and Natural Communities
Hierarchical agglomerative clustering starts with each paper in
a cluster by itself. At each stage, the two ‘‘closest’’ clusters are
merged. The process is repeated until all papers are in a single
cluster. The overall process results in a ‘‘clustering tree’’ (re-
ferred to as a dendrogram in much of the literature), with the
single paper clusters at the leaves. Each internal node corre-
sponds to a cluster resulting from merging its two children.

Researchers have used many different distance measures. We
believe that the natural community concept is valid independent
of the distance measure used and thus we selected one based on
cosine similarity, which is the standard similarity measure in the
literature (9). With each paper p, we associate an N-dimensional
reference vector rp, where N is the total number of papers in the
CiteSeer database (N � 1.85 million). There is a one in element
i of rp if p references paper i, otherwise the entry is 0. The
similarity between two papers p and q can now be measured in
terms of the cosine of the angle between the associated reference
vectors, rp and rq. More formally, the similarity of p and q is
defined to be

similarit y�p, q� � cos�rp, rq� �
rp�rq

�rp� �rq� , [1]

where rp�r q represents the inner product of r p and rq and ��r p��
represents the length of vector rp. So, if two papers have no
references in common, then their similarity is minimal, i.e., 0 (90°
angle); two papers citing exactly the same set of papers have
maximal similarity, i.e., 1 (0° angle). To get a distance measure
between papers, we simply use 1� the cosine, so the distance
between papers ranges from 0 to 1. When merging two papers
or clusters, we represent the new cluster by the normalized sum
of all of the individual papers’ reference vectors, called the
‘‘centroid’’ of the cluster. (Our clustering method is thus a

standard centroid-based agglomerative clustering technique
based on cosine similarity; ref. 10.) For a cluster containing a
single paper, the centroid is simply the reference vector of the
paper itself. Finally, we define the distance between two clusters
C and C�. Let nC and nC� be the number of papers in each cluster,
and let rC and rC� be the centroids of the clusters. Then

distance�C, C�� � � nCnC�

nC � nC�
�1 � cos�rC, rC��� [2]

The square root scaling factor is used to force smaller commu-
nities to merge together before larger ones (11). This particular
scaling factor leads to well balanced merge trees.

Our distance measure is a form of bibliographic coupling (12).
A prominent alternative is to use cocitation analysis (13). In
cocitation, two papers are judged similar if they are both cited
by another paper. This is a very useful similarity measure.
However, for this measure to work properly, a certain time-lag
is required in order for papers to build up a citation record.
Because our objective is to detect changes as early as possible,
we opted for the common reference set approach. This also
allows us to group papers that are not cited at all or only rarely
cited, which is a significant portion of all papers.

To verify that the clustering algorithm and distance function
were satisfactory, we compared the quality of the clusters we
obtained to clusters obtained by standard techniques such as k
means. One method of comparison is to count the number of
journals and conferences needed to cover 90% of the papers in
a cluster. The assumption here is that most journals, with a few
exceptions, such as SIAM Review, are on a focused topic. Thus,
the fewer the number of journals needed to cover a cluster, the
tighter the cluster. In our tests, we found that the clusters
obtained with the agglomerative algorithm were better defined
than the clusters obtained by other methods.

Instabilities. To determine the set of natural communities, we
examine changes in the agglomerative clustering trees under
minor perturbations of the input data (14). More specifically, we
compare different clusterings of the CiteSeer data, where we
remove a small randomly selected set of papers (5%) before each
clustering run. Given a base tree T1, we compare how well the
clusters in T1 match with those in a second tree T2, obtained on
a different clustering run.

Let C and C� be two clusters of papers we wish to compare.
Treating C and C� as sets, we define a value match(C, C�)
(between 0 and 1), as follows:

match�C, C�� � min� C � C�
 C ,

 C � C�
 C� �. [3]

The definition ensures that a high match values (close to 1)
occurs when two clusters have many papers in common and are
roughly of the same size. We define the value best-match (C, T)
as the highest match (C, C�) value for any cluster C� in T.

We considered a total of 45 clusterings of the CiteSeer graph.
Each run uses a graph with a random 5% of the core papers
removed. Full clustering runs on a data set of this size require

Table 1. Statistics of CiteSeer citation graph

Data set n

Nodes 1,859,659
Nodes core 252,493
Edges 4,584,756
Average out-degree core 18
Median out-degree core 14
Median in-degree core 0

Table 2. Best-match values

Size range
No. of clusters

in base tree
Average

best-match SD

100–400 2,812 0.42 0.07
401–1600 558 0.41 0.07
1,601–6,400 149 0.38 0.07
6,401–102,400 46 0.40 0.08

Fig. 1. Structure of NEC CiteSeer citation graph.
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an efficient algorithm, and so we carefully exploit the sparseness
of the underlying network. This allows for an efficient update of
the set of intercluster distances after each merge. Code and data
are available on request.

Table 2 gives the average best-match values of the clusters in
the base tree T1 matched against the other 44 trees. So, for
example, the first row in the table shows that T1 has 2,812 clusters
containing between 100 and 400 papers. For each cluster C in
this size range, we found the best matching cluster and its
best-match value in trees T2 through T45. The average over these
best-match values is 0.42 with a standard deviation of 0.07.

Table 2 shows that the average cluster matches quite poorly to
its closest match in the other tree (average best-match value only
�0.40). Interestingly, we can take advantage of these instabili-
ties, because these clusters are not uniformly unstable and
therefore can be exploited to uncover the true hidden structure
of the data. In fact, a careful examination of the results of many
runs shows that a small number of clusters, �170, appear in a
good fraction of clusterings, and it is these clusters that corre-
spond to recognizable topics. These ‘‘fixed points’’ in the Cite-
Seer graph are what we call natural communities, and these are
the communities whose evolution we will track over time.

Natural Communities. We define natural communities as follows.
We fix an input data perturbation value of 5%. Then we produce
a series of subgraphs G1, G2, . . . , Gn of the original network G
(the CiteSeer citation graph) where each Gi is the subgraph of
G induced by a random subset of 95% of the core vertices of G.
Our clustering algorithm then produces a set of clustering trees
T � {T1, T2, . . . , Tn}. We choose the first tree T1 as our base tree.
We now define a natural community or cluster as follows.
Definition 3.1. A community C in base tree T1 is natural iff in a
fraction f of the clustering trees in T the best-match of C has a
value greater than p, a predefined threshold.

The definition has two parameters: f, the fraction of trees out
of n trees total, and p, a lower-bound for the best match.
Depending on what values one chooses for these parameters, one
obtains more or less well defined natural communities. In
practice, we set these values sufficiently high to select clusters
that are clearly different from the average cluster in the tree.

Using n � 45, f � 0.6, p � 0.7 for clusters with �1,000 papers
and p � 0.5 for larger clusters, we found 170 natural communities

of size 100 or greater in the CiteSeer graph, covering all aspects
of computer science and portions of other fields like math and
physics (see Table 3). These natural communities were selected
from �3,500 clusters with size �100 in the base tree. Note that
these natural communities vary in strength and their precise
number depends, of course, on the setting of f and p. By using
keyword data and journal titles, we found the natural commu-
nities to be quite coherent. In particular, the smaller to medium
natural communities (up to a few thousand papers) correspond
to well defined areas. Some example communities are listed in
Table 4 (more details below). [Smaller natural communities are
better defined. By using a different, but somewhat nonstandard,
distance measure, one can also obtain better defined larger
natural communities; ref. 14.]

We now turn to our main objective: the use of these natural
communities in tracking the temporal evolution of the network.

Tracking Natural Communities
The key question remaining is how well the natural communities
allow us to track the temporal evolution of the community
structure in our network data.

In particular, we need to validate that when the network
evolves over time and a few years of papers are added (i) there
is not a dramatic shift in terms of natural communities, and
(ii) that the occurring changes have a plausible interpretation in
terms of the evolution of the field. These are inherently empirical
questions. The results discussed below will show that our notion
of natural communities satisfies both criteria, thereby making
the concept a good candidate for use in temporal tracking in
large networked data sets.

Method. To study the temporal evolution process in detail, we will
track changes for a subset of the natural community data
described above. We use two snapshots: the time periods 1990–
1998 (referred to as the 1998 data set) and 1990–2001 (referred
to as the 2001 data set). As such, our goal is to study changes in
community structure as they occurred during the three years
from 1999 to 2001. [The core set of the CiteSeer data set consists
of papers available in digital form on the web. The literature
coverage of the earlier years of the collection is less complete
because the fraction of papers available on the web was limited,
but by the late 1990s, the coverage for computer science had
become quite comprehensive.]

In the 2001 data set, there are �100 natural communities
containing between 100 and 350 papers. To analyze temporal
changes in detail, we considered a subset of 20% of these
communities (18 total) for closer analysis. Our selection of
communities was representative of the overall set of communi-
ties in terms of size and year distribution. The communities
contained 3,200 papers total. Let P2001 be the set of these papers.
We create a citation subgraph containing only papers from P2001
and the references in these papers. We also removed some

Table 3. Natural communities

Size range
No. of natural
communities

Average
best match SD

100–400 116 0.74 0.05
401–1600 32 0.62 0.07
1,601–6,400 17 0.60 0.06
6,401–102,400 5 0.60 0.10

Table 4. Established natural communities

Topic Size in 1998 Size in 2001 Percentage in 2001

Digital watermarking 97 172 35.5
Data mining and association rules 78 128 25.0
Game search trees and artificial intelligence 161 172 8.7
Network traffic control 237 258 8.5
Crash recovery for distributed systems 139 151 7.3
Asynchronous circuit designand verification 231 244 6.6
Synchronous and asynchronous systems 203 219 6.4
Complexity theory: enumerability and querying 78 84 6.0
Query optimization for parallel databases 119 125 4.0
Fractal image coding and compression 86 89 2.2
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low-quality information: all core papers that reference fewer
than five other papers and all noncore papers only referenced
once. This reduced the size of the subgraph by �20%. We repeat
this procedure to create our 1998 graph by starting with papers
up to and including 1998 from the set P2001 (a subset of 2,791
papers).

Results. We determined the natural communities for each data
set by considering 10 clusterings for each graph and by using f �
p � 0.8 in our definition of natural communities. We considered
all natural communities with at least 75 papers. We then
compared the natural community trees for the 1998 and the 2001
data, by finding for each 1998 natural community the best
matching natural community in our 2001 data and vice versa.

Our first observation is that most of the 1998 communities
have a good match (at least 70%) with a 2001 community (and
vice versa). (Note that the 2001 data set contains �13% more
papers than the 1998 set, with some communities growing by
�30%.) Also, the natural community tree structures largely
match up. Based on the matching data and the trees, we classify
the natural communities in the 2001 data set as either established
or emerging.

The established communities are given in Table 4. The table
gives the size of the communities in 1998 and 2001 and then the
percentage of papers in the 2001 community that appeared after
1998 (indicating the growth rate). The topic of each community
was determined by considering the most frequent content words
in the titles of the papers in each community. The communities
are sorted by growth rate. We see that the growth rates vary quite
a bit: some communities are very active and growing fast, such
as digital watermarking and data mining, but several other
communities appear stagnant, such as fractal image coding and
compression, and query optimization for parallel databases.

From the perspective of temporal evolution, the most inter-
esting changes involve the emergence of new communities. We
identified two emerging communities: ad hoc�wireless networks
and quantum computing. (In ad hoc networks, one studies
self-configuring, distributed networks, generally wireless.) See
Table 5. These emerging communities are consistent with recent
developments in the field.
Wireless networks. Our first example is the emergence of the
wireless community. In 1998, we have two natural communities
centered around ‘‘network systems’’ with 367 papers. These
communities consist of a combination of optical networking,
distributed computing, and crash recovery papers with some
initial papers on ad hoc�wireless networks. However, at this
time, there is no well defined community on ad hoc�wireless
networks. However, there is a significant change in networking
papers over the 1999–2001 period, as �60 papers on ad hoc�
wireless networks are added to the database. As a result, we find
that, in the 2001 data, the ad hoc�wireless papers form a distinct
natural community consisting of ad hoc�wireless papers from

the 1998 set with the post-1998 papers added. In the 2001 cluster
tree, this new community merges in with the larger network
community at a higher level.
Quantum computing. A second example is the emergence of the
quantum algorithms and communication community within
quantum computing. This is an example of a community that is
branching out over time (i.e., it is an evolving community). In the
1998 set of natural communities, we find that there is a natural
community of size 96 that contains papers on quantum com-
puting and complexity theory. In the 2001 set, this community
has grown to 140 papers. However, the 2001 clustering now
reveals further substructure: there are two distinct subcommu-
nities of the size 140 community: one on quantum complexity
(size 82; fairly stable) and another, fast growing community of
38 papers (20 more papers merge in separately). After examining
the titles, it is clear that most of these papers cover quantum
algorithms and quantum communication, both very hot topics in
the past few years. So, in 1998, the quantum community was
mostly centered on one topic; in 2001, the community was
branching and growing quickly (theory conference agendas
actually reflect this). Given the recent explosion of work in
the area of quantum computing, it is encouraging to see these
developments reflected in our natural community data.

In summary, these examples show that our notion of natural
communities provides a promising tool for studying the temporal
evolution of linked networks.

Related Work
Early pioneering work on discovering scientific communities
using reference linkage information was done by Small and
colleagues (13, 15). More recently, the NEC CiteSeer group
succeeded in identifying intellectual communities in the Cite-
Seer database by using new variants of cocitation analysis (16)
and network flow methods (17). The main impetus for the recent
renewed activity in this area comes from the increasing impor-
tance of large linked networks in general, not just networks
based on citation data (e.g., ref. 18). Indeed, recent work (19)
explores the dynamics of social networks by simultaneously
analyzing coauthorship and citation networks. For future work,
it would be interesting to consider the relationship between
authorship and natural clusters of papers as we identified here.

A key aspect that distinguishes our work is the emphasis on the
temporal evolution of the network. As a consequence, for
example, cocitation is less useful as a similarity measure, because
it takes time to build up a cocitation record. Similarly, the use
of highly cited papers, as in ref. 16, to identify core communities,
also has limitations when looking for the most recent changes in
the network involving emerging communities, because again it
takes time to build up a citation record. (Ref. 16 measures the
activity level of established communities by considering growth
rates.) A related question is whether so-called hubs and author-
ities, as introduced by Kleinberg (20), form quickly enough to
track recent changes. In general, a more detailed comparison
between our natural communities and communities identified by
using these other approaches is needed.

Another aspect that differentiates our work is its focus on
stability: to track clusters over time, it is important that the
clustering hierarchy be relatively stable. In many other applica-
tions, what matters most is not stability but finding an organi-
zation of items that, on human inspection, is coherent. With
respect to the CiteSeer document collection, this amounts to
identifying key computer science topics, such as systems and
databases using titles and abstracts (17). However, the impor-
tance of stability is gaining recognition. Refs. 21 and 22 analyzed
the stability of the two popular link-based ranking algorithms,
HITS (20) and PageRank (23). They point out that intuitively we
would not want the rankings for a given query to change much
if the base data set, for example, the World Wide Web, is altered

Table 5. Emerging natural communities

Community Size
Percentage

in 2001

1998
Networking (two communities) 237 	 130
Quantum complexity 96

2001
Ad hoc/wireless networks 130 49.2
Quantum computation 140 30.0
Subcommunities

Quantum complexity 82 15.9
Quantum algorithms and communication 38 76.3
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slightly. They go on to develop algorithms that stabilize the HITS
rankings.

Conclusions
We have provided a framework for studying the temporal
evolution of the community structure of large linked networks.
The notion of natural communities can be used to identify a
relatively stable core of a hierarchical agglomerative clustering.
Our approach exploits the inherent instabilities in clusterings in
high-dimensional spaces (24). The true structure in the data are
revealed by averaging out the large number of ‘‘accidental’’
clusters that emerge in any single clustering run. In our exper-
iments on the CiteSeer network, we showed how the natural
communities can be used to study the evolution of the network

by tracking established communities and uncovering new,
emerging community structure. Our next step is to evaluate our
approach on other evolving linked networks.
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9. Salton, G. (1989) Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer (Addison–Wesley, Boston).

10. Jain, A. K. & Dubes, R. C. (1998) Algorithms for Clustering Data (Prentice-Hall,
Upper Saddle River, NJ).

11. Duda, R. O. & Hart, P. E. (1973) Pattern Classification and Scene Analysis
(Wiley, New York).

12. Kessler, M. M. (1963) Am. Document 14, 10–25.

13. Small, H. (1973) J. Am. Soc. Info. Sci. 24, 265–269.
14. Hopcroft, J., Khan, O., Kulis, B. & Selman, B. (2003) in Proceedings of the

Association of Computational Machinery Special Interest Groups Knowledge Dis-
covery in Data and Data Mining, eds. Ramakrishnan, R., Stolfo, S., Bayardo, R. &
Parsa, I. (Assoc. Comput. Machinery Press, New York), Vol. 9, pp. 541–546.

15. Small, H. & Griffith, B. C. (1974) Sci. Stud. 4, 17–40.
16. Popescul, A., Flake, G., Lawrence, S., Ungar, L. & Giles, C. L. (2000) Advances

in Digital Libraries, ADL 2000 (IEEE, New York), pp. 173–182.
17. Flake, G. W., Lawrence, S. & Giles, C. L. (2000) in Proceedings of the

Association of Computational Machinery Special Interest Groups Knowledge
Discovery in Data and Data Mining, eds. Ramakrishnan, R., Stolfo, S., Bayardo,
R. & Parsa, I. (Assoc. Comput. Machinery Press, New York), Vol. 6, pp.
255–259.

18. Gibson, D., Kleinberg, J. M. & Raghavan, P. (1998) Proc. Hypertext 1998 Conf.
9, 225–234.

19. Börner, K., Maru, J. T. & Goldstone, R. L. (2004) Proc. Natl. Acad. Sci. USA
101, 5266–5273.

20. Kleinberg, J. M. (1999) J. Assoc. Comput. Machinery 46, 604–632.
21. Ng, A. Y., Zheng, A. X. & Jordan, M. (2001) Proc. Int. Joint Conf. Artificial

Intelligence 17, 903–910.
22. Ng, A. Y., Zheng, A. X. & Jordan, M. (2001) Proc. Assoc. Comput. Machinery

Spec. Interest Groups Inf. Retrieval Conf., New York 24, 258–266.
23. Page, L. & Brin, S. (1998) Comput. Networks ISDN Syst. 30, 107–113.
24. Aggarwal, C. C., Hinneburg, A. & Keim, D. A. (2001) in Lecture Notes in

Computer Science, eds. Van den Bussche, J. & Vianu, V. (Springer, Heidel-
berg), pp. 420–434.

Hopcroft et al. PNAS � April 6, 2004 � vol. 101 � suppl. 1 � 5253


